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11 | MAGNETIC FORCES
AND FIELDS

Figure 11.1 An industrial electromagnet is capable of lifting thousands 0 pounds of metallic waste. (credit: modification of
work by “BedfordAl”/Flickr)
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Introduction

For the past few chapters, we have been studying electrostatic forces and fields, which are caused by electric charges at
rest. These electric fields can move other free charges, such as producing a current in a circuit; however, the electrostatic
forces and fields themselves come from other static charges. In this chapter, we see that when an electric charge moves, it
generates other forces and fields. These additional forces and fields are what we commonly call magnetism.

Before we examine the origins of magnetism, we first describe what it is and how magnetic fields behave. Once we are
more familiar with magnetic effects, we can explain how they arise from the behavior of atoms and molecules, and how
magnetism is related to electricity. The connection between electricity and magnetism is fascinating from a theoretical point
of view, but it is also immensely practical, as shown by an industrial electromagnet that can lift thousands of pounds of
metal.
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11.1 | Magnetism and Its Historical Discoveries

Learning Objectives

By the end of this section, you will be able to:

* Explain attraction and repulsion by magnets
» Describe the historical and contemporary applications of magnetism

Magnetism has been known since the time of the ancient Greeks, but it has always been a bit mysterious. You can see
electricity in the flash of a lightning bolt, but when a compass needle points to magnetic north, you can’t see any force
causing it to rotate. People learned about magnetic properties gradually, over many years, before several physicists of
the nineteenth century connected magnetism with electricity. In this section, we review the basic ideas of magnetism and
describe how they fit into the picture of a magnetic field.

Brief History of Magnetism

Magnets are commonly found in everyday objects, such as toys, hangers, elevators, doorbells, and computer devices.
Experimentation on these magnets shows that all magnets have two poles: One is labeled north (N) and the other is labeled
south (S). Magnetic poles repel if they are alike (both N or both S), they attract if they are opposite (one N and the other S),
and both poles of a magnet attract unmagnetized pieces of iron. An important point to note here is that you cannot isolate
an individual magnetic pole. Every piece of a magnet, no matter how small, which contains a north pole must also contain
a south pole.

Visit this website (https://lopenstaxcollege.orgl/li21lmagnetcompass) for an interactive demonstration of
magnetic north and south poles.

An example of a magnet is a compass needle. It is simply a thin bar magnet suspended at its center, so it is free to rotate in
a horizontal plane. Earth itself also acts like a very large bar magnet, with its south-seeking pole near the geographic North
Pole (Figure 11.2). The north pole of a compass is attracted toward Earth’s geographic North Pole because the magnetic
pole that is near the geographic North Pole is actually a south magnetic pole. Confusion arises because the geographic term
“North Pole” has come to be used (incorrectly) for the magnetic pole that is near the North Pole. Thus, “ north magnetic
pole” is actually a misnomer—it should be called the south magnetic pole. [Note that the orientation of Earth’s magnetic
field is not permanent but changes (“flips”) after long time intervals. Eventually, Earth’s north magnetic pole may be located
near its geographic North Pole.]

This OpenStax book is available for free at http://cnx.org/content/col12074/1.9
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Geographic North Pole

Magnetic North Pole

Figure 11.2 The north pole of a compass needle points toward
the south pole of a magnet, which is how today’s magnetic field
is oriented from inside Earth. It also points toward Earth’s
geographic North Pole because the geographic North Pole is
near the magnetic south pole.

Back in 1819, the Danish physicist Hans Oersted was performing a lecture demonstration for some students and noticed that
a compass needle moved whenever current flowed in a nearby wire. Further investigation of this phenomenon convinced
Oersted that an electric current could somehow cause a magnetic force. He reported this finding to an 1820 meeting of the
French Academy of Science.

Soon after this report, Oersted’s investigations were repeated and expanded upon by other scientists. Among those whose
work was especially important were Jean-Baptiste Biot and Felix Savart, who investigated the forces exerted on magnets by
currents; André Marie Ampere, who studied the forces exerted by one current on another; Frangois Arago, who found that
iron could be magnetized by a current; and Humphry Davy, who discovered that a magnet exerts a force on a wire carrying
an electric current. Within 10 years of Oersted’s discovery, Michael Faraday found that the relative motion of a magnet and
a metallic wire induced current in the wire. This finding showed not only that a current has a magnetic effect, but that a
magnet can generate electric current. You will see later that the names of Biot, Savart, Ampére, and Faraday are linked to
some of the fundamental laws of electromagnetism.

The evidence from these various experiments led Ampére to propose that electric current is the source of all magnetic
phenomena. To explain permanent magnets, he suggested that matter contains microscopic current loops that are somehow
aligned when a material is magnetized. Today, we know that permanent magnets are actually created by the alignment of
spinning electrons, a situation quite similar to that proposed by Ampeére. This model of permanent magnets was developed
by Ampére almost a century before the atomic nature of matter was understood. (For a full quantum mechanical treatment
of magnetic spins, see Quantum Mechanics (http://chx.org/content/m58573/latest/) and Atomic Structure
(http:/lcnx.org/content/m58583/latest/) .)

Contemporary Applications of Magnetism

Today, magnetism plays many important roles in our lives. Physicists’ understanding of magnetism has enabled the
development of technologies that affect both individuals and society. The electronic tablet in your purse or backpack, for
example, wouldn’t have been possible without the applications of magnetism and electricity on a small scale (Figure 11.3).
Weak changes in a magnetic field in a thin film of iron and chromium were discovered to bring about much larger changes
in resistance, called giant magnetoresistance. Information can then be recorded magnetically based on the direction in which
the iron layer is magnetized. As a result of the discovery of giant magnetoresistance and its applications to digital storage,
the 2007 Nobel Prize in Physics was awarded to Albert Fert from France and Peter Grunberg from Germany.
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Figure 11.3 Engineering technology like computer storage
would not be possible without a deep understanding of
magnetism. (credit: Klaus Eifert)

All electric motors—with uses as diverse as powering refrigerators, starting cars, and moving elevators—contain magnets.
Generators, whether producing hydroelectric power or running bicycle lights, use magnetic fields. Recycling facilities
employ magnets to separate iron from other refuse. Research into using magnetic containment of fusion as a future energy
source has been continuing for several years. Magnetic resonance imaging (MRI) has become an important diagnostic tool
in the field of medicine, and the use of magnetism to explore brain activity is a subject of contemporary research and
development. The list of applications also includes computer hard drives, tape recording, detection of inhaled asbestos, and
levitation of high-speed trains. Magnetism is involved in the structure of atomic energy levels, as well as the motion of
cosmic rays and charged particles trapped in the Van Allen belts around Earth. Once again, we see that all these disparate
phenomena are linked by a small number of underlying physical principles.

11.2 | Magnetic Fields and Lines

Learning Objectives

By the end of this section, you will be able to:

* Define the magnetic field based on a moving charge experiencing a force
* Apply the right-hand rule to determine the direction of a magnetic force based on the motion of
a charge in a magnetic field

» Sketch magnetic field lines to understand which way the magnetic field points and how strong it
is in a region of space

We have outlined the properties of magnets, described how they behave, and listed some of the applications of magnetic
properties. Even though there are no such things as isolated magnetic charges, we can still define the attraction and repulsion
of magnets as based on a field. In this section, we define the magnetic field, determine its direction based on the right-hand
rule, and discuss how to draw magnetic field lines.

Defining the Magnetic Field

A magpnetic field is defined by the force that a charged particle experiences moving in this field, after we account for the
gravitational and any additional electric forces possible on the charge. The magnitude of this force is proportional to the
amount of charge g, the speed of the charged particle v, and the magnitude of the applied magnetic field. The direction of
this force is perpendicular to both the direction of the moving charged particle and the direction of the applied magnetic

—_
field. Based on these observations, we define the magnetic field strength B based on the magnetic force F on a charge

g moving at velocity V as the cross product of the velocity and magnetic field, that is,
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F =gV xB8. (11.1)

—
In fact, this is how we define the magnetic field B —in terms of the force on a charged particle moving in a magnetic
field. The magnitude of the force is determined from the definition of the cross product as it relates to the magnitudes of
each of the vectors. In other words, the magnitude of the force satisfies

F = gvBsin6 (11.2)

where 0 is the angle between the velocity and the magnetic field.

The ST unit for magnetic field strength B is called the tesla (T) after the eccentric but brilliant inventor Nikola Tesla
(1856—-1943), where

_ 1N (11.3)
1T Ao
A smaller unit, called the gauss (G), where 1G = 107*T, is sometimes used. The strongest permanent magnets have

fields near 2 T; superconducting electromagnets may attain 10 T or more. Earth’s magnetic field on its surface is only about
5% 10™°T, or0.5G.

Problem-Solving Strategy: Direction of the Magnetic Field by the Right-Hand Rule

- -
The direction of the magnetic force F is perpendicular to the plane formed by ¥V and B, as determined by
the right-hand rule-1 (or RHR-1), which is illustrated in Figure 11.4.
1. Orient your right hand so that your fingers curl in the plane defined by the velocity and magnetic field vectors.

2. Using your right hand, sweep from the velocity toward the magnetic field with your fingers through the
smallest angle possible.

The magnetic force is directed where your thumb is pointing.

If the charge was negative, reverse the direction found by these steps.
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Figure 11.4 Magnetic fields exert forces on moving charges.
The direction of the magnetic force on a moving charge is

— -
perpendicular to the plane formedby V and B and

follows the right-hand rule-1 (RHR-1) as shown. The magnitude
of the force is proportional to g, v, B, and the sine of the

—_
angle between ¥V and B.

Visit this website (https:/lopenstaxcollege.org/l/21magfields) for additional practice with the direction of
magnetic fields.

There is no magnetic force on static charges. However, there is a magnetic force on charges moving at an angle to a
magnetic field. When charges are stationary, their electric fields do not affect magnets. However, when charges move, they
produce magnetic fields that exert forces on other magnets. When there is relative motion, a connection between electric
and magnetic forces emerges—each affects the other.

Example 11.1

An Alpha-Particle Moving in a Magnetic Field
An alpha-particle (q =32x% 10_19C) moves through a uniform magnetic field whose magnitude is 1.5 T.

The field is directly parallel to the positive z-axis of the rectangular coordinate system of Figure 11.5. What
is the magnetic force on the alpha-particle when it is moving (a) in the positive x-direction with a speed of

5.0x 10*m/s? (b) in the negative y-direction with a speed of 5.0 X 10% m/s? (c) in the positive z-direction with

A A A
aspeed of 5.0 x 10*m/s? (d) with a velocity V = (Z.Oi -30j + l.Ok)x 104 m/s?
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Figure 11.5 The magnetic forces on an alpha-particle moving in a uniform
magnetic field. The field is the same in each drawing, but the velocity is different.

Strategy

We are given the charge, its velocity, and the magnetic field strength and direction. We can thus use the equation
— -
F =¢V x B or F=gqvBsiné to calculate the force. The direction of the force is determined by RHR-1.

Solution
a. First, to determine the direction, start with your fingers pointing in the positive x-direction. Sweep your

fingers upward in the direction of magnetic field. Your thumb should point in the negative y-direction.
This should match the mathematical answer. To calculate the force, we use the given charge, velocity, and
magnetic field and the definition of the magnetic force in cross-product form to calculate:

— —

=2 ~19 40 " “ldg
F =¢gV x B =(32x10 c)(5.0><10 m/51)x(1.5Tk)=—2.4x10 Nj.

First, to determine the directionality, start with your fingers pointing in the negative y-direction. Sweep
your fingers upward in the direction of magnetic field as in the previous problem. Your thumb should be
open in the negative x-direction. This should match the mathematical answer. To calculate the force, we
use the given charge, velocity, and magnetic field and the definition of the magnetic force in cross-product
form to calculate:

-

AN A N
F =gV x B =(32x 10-19c)(—5.0>< 10*m/s j)x(l.ST k)=—2.4><10_14N i.

An alternative approach is to use Equation 11.2 to find the magnitude of the force. This applies for both
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parts (a) and (b). Since the velocity is perpendicular to the magnetic field, the angle between them is 90
degrees. Therefore, the magnitude of the force is:

F = qvBsin6 = (3.2 % 10_19C)(5.0 x 10*m/s)(1.5 T)sin(90°) = 2.4 x 1071 N.

c. Since the velocity and magnetic field are parallel to each other, there is no orientation of your hand that
will result in a force direction. Therefore, the force on this moving charge is zero. This is confirmed by
the cross product. When you cross two vectors pointing in the same direction, the result is equal to zero.

d. First, to determine the direction, your fingers could point in any orientation; however, you must sweep
your fingers upward in the direction of the magnetic field. As you rotate your hand, notice that the thumb
can point in any x- or y-direction possible, but not in the z-direction. This should match the mathematical
answer. To calculate the force, we use the given charge, velocity, and magnetic field and the definition of
the magnetic force in cross-product form to calculate:

-

N~ ¢ ~19 A A n 4 o
F =gV x B =(32x10 C)((Z.Ol —3.0j +1.0k)><10 m/s)x(l.STk)

A A
= (—14.4i ~9.6] )x 107N,

This solution can be rewritten in terms of a magnitude and angle in the xy-plane:

| F| = P2+ F}=1-1447 + (=967 x 107N = 1.7x 107N
F —15
0 = () = (S20X 100N ) e
Fi ~144x10"°N

The magnitude of the force can also be calculated using Equation 11.2. The velocity in this question,
however, has three components. The z-component of the velocity can be neglected, because it is parallel
to the magnetic field and therefore generates no force. The magnitude of the velocity is calculated from
the x- and y-components. The angle between the velocity in the xy-plane and the magnetic field in the
z-plane is 90 degrees. Therefore, the force is calculated to be:

| V| = 1@+ (=3)*x10* R =36x 10* D
F = gvBsin0=(32x 1072C)(3.6 x 10*m/s)(1.5 T)sin(90°) = 1.7 x 10~ 14 N.

This is the same magnitude of force calculated by unit vectors.
Significance

The cross product in this formula results in a third vector that must be perpendicular to the other two. Other
physical quantities, such as angular momentum, also have three vectors that are related by the cross product. Note
that typical force values in magnetic force problems are much larger than the gravitational force. Therefore, for
an isolated charge, the magnetic force is the dominant force governing the charge’s motion.

11.1 Check Your Understanding Repeat the previous problem with the magnetic field in the x-direction
rather than in the z-direction. Check your answers with RHR-1.

Representing Magnetic Fields

The representation of magnetic fields by magnetic field lines is very useful in visualizing the strength and direction of the
magnetic field. As shown in Figure 11.6, each of these lines forms a closed loop, even if not shown by the constraints of
the space available for the figure. The field lines emerge from the north pole (N), loop around to the south pole (S), and
continue through the bar magnet back to the north pole.

Magnetic field lines have several hard-and-fast rules:

1. The direction of the magnetic field is tangent to the field line at any point in space. A small compass will point in
the direction of the field line.

This OpenStax book is available for free at http://cnx.org/content/col12074/1.9
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2. The strength of the field is proportional to the closeness of the lines. It is exactly proportional to the number of lines
per unit area perpendicular to the lines (called the areal density).

Magnetic field lines can never cross, meaning that the field is unique at any point in space.

4. Magnetic field lines are continuous, forming closed loops without a beginning or end. They are directed from the
north pole to the south pole.

The last property is related to the fact that the north and south poles cannot be separated. It is a distinct difference from
electric field lines, which generally begin on positive charges and end on negative charges or at infinity. If isolated magnetic
charges (referred to as magnetic monopoles) existed, then magnetic field lines would begin and end on them.

N\

ZE

S —=—o
Magnetic field lines of a bar magnet Magnetic field lines Magnetic field lines
between unlike poles between like poles
@ (b) ©

Figure 11.6 Magnetic field lines are defined to have the direction in which a small compass points when placed at a
location in the field. The strength of the field is proportional to the closeness (or density) of the lines. If the interior of the
magnet could be probed, the field lines would be found to form continuous, closed loops. To fit in a reasonable space, some
of these drawings may not show the closing of the loops; however, if enough space were provided, the loops would be closed.

11.3 | Motion of a Charged Particle in a Magnetic Field

Learning Objectives

By the end of this section, you will be able to:

* Explain how a charged particle in an external magnetic field undergoes circular motion

* Describe how to determine the radius of the circular motion of a charged particle in a magnetic
field

A charged particle experiences a force when moving through a magnetic field. What happens if this field is uniform over
the motion of the charged particle? What path does the particle follow? In this section, we discuss the circular motion of the
charged particle as well as other motion that results from a charged particle entering a magnetic field.

The simplest case occurs when a charged particle moves perpendicular to a uniform B-field (Figure 11.7). If the field is
in a vacuum, the magnetic field is the dominant factor determining the motion. Since the magnetic force is perpendicular
to the direction of travel, a charged particle follows a curved path in a magnetic field. The particle continues to follow this
curved path until it forms a complete circle. Another way to look at this is that the magnetic force is always perpendicular
to velocity, so that it does no work on the charged particle. The particle’s kinetic energy and speed thus remain constant.
The direction of motion is affected but not the speed.
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Figure 11.7 A negatively charged particle moves in the plane of the paper in a
region where the magnetic field is perpendicular to the paper (represented by the
small X ’s—Iike the tails of arrows). The magnetic force is perpendicular to the

velocity, so velocity changes in direction but not magnitude. The result is
uniform circular motion. (Note that because the charge is negative, the force is
opposite in direction to the prediction of the right-hand rule.)

2
In this situation, the magnetic force supplies the centripetal force F = % Noting that the velocity is perpendicular to
the magnetic field, the magnitude of the magnetic force is reduced to F' = gvB. Because the magnetic force F supplies the

centripetal force F., we have

2 114
qvB = (11.4)
Solving for r yields
r= % (11.5)

Here, r is the radius of curvature of the path of a charged particle with mass m and charge g, moving at a speed v that is
perpendicular to a magnetic field of strength B. The time for the charged particle to go around the circular path is defined as
the period, which is the same as the distance traveled (the circumference) divided by the speed. Based on this and Equation
11.4, we can derive the period of motion as

T = 2ar _ 2xmy _ 2am (11.6)
\% 1% qB qB :

If the velocity is not perpendicular to the magnetic field, then we can compare each component of the velocity separately
with the magnetic field. The component of the velocity perpendicular to the magnetic field produces a magnetic force
perpendicular to both this velocity and the field:

Vperp = VIO, Vpara = veoso. (11.7)

where 6 is the angle between v and B. The component parallel to the magnetic field creates constant motion along the
same direction as the magnetic field, also shown in Equation 11.7. The parallel motion determines the pitch p of the helix,
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which is the distance between adjacent turns. This distance equals the parallel component of the velocity times the period:
P =Vpara T (11.8)

The result is a helical motion, as shown in the following figure.

y
i

Figure 11.8 A charged particle moving with a velocity not in
the same direction as the magnetic field. The velocity
component perpendicular to the magnetic field creates circular
motion, whereas the component of the velocity parallel to the
field moves the particle along a straight line. The pitch is the
horizontal distance between two consecutive circles. The
resulting motion is helical.

While the charged particle travels in a helical path, it may enter a region where the magnetic field is not uniform. In
particular, suppose a particle travels from a region of strong magnetic field to a region of weaker field, then back to a region
of stronger field. The particle may reflect back before entering the stronger magnetic field region. This is similar to a wave
on a string traveling from a very light, thin string to a hard wall and reflecting backward. If the reflection happens at both
ends, the particle is trapped in a so-called magnetic bottle.

Trapped particles in magnetic fields are found in the Van Allen radiation belts around Earth, which are part of Earth’s
magnetic field. These belts were discovered by James Van Allen while trying to measure the flux of cesmic rays on Earth
(high-energy particles that come from outside the solar system) to see whether this was similar to the flux measured on
Earth. Van Allen found that due to the contribution of particles trapped in Earth’s magnetic field, the flux was much higher
on Earth than in outer space. Aurorae, like the famous aurora borealis (northern lights) in the Northern Hemisphere (Figure
11.9), are beautiful displays of light emitted as ions recombine with electrons entering the atmosphere as they spiral along
magnetic field lines. (The ions are primarily oxygen and nitrogen atoms that are initially ionized by collisions with energetic
particles in Earth’s atmosphere.) Aurorae have also been observed on other planets, such as Jupiter and Saturn.
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Figure 11.9 (a) The Van Allen radiation belts around Earth trap ions produced by cosmic rays striking Earth’s atmosphere. (b)
The magnificent spectacle of the aurora borealis, or northern lights, glows in the northern sky above Bear Lake near Eielson Air
Force Base, Alaska. Shaped by Earth’s magnetic field, this light is produced by glowing molecules and ions of oxygen and
nitrogen. (credit b: modification of work by USAF Senior Airman Joshua Strang)

Example 11.2

Beam Deflector

A research group is investigating short-lived radioactive isotopes. They need to design a way to transport alpha-
particles (helium nuclei) from where they are made to a place where they will collide with another material
to form an isotope. The beam of alpha-particles (m =6.64% 1077 kg, g =3.2x% 1071 C) bends through a
90-degree region with a uniform magnetic field of 0.050 T (Figure 11.10). (a) In what direction should the

magnetic field be applied? (b) How much time does it take the alpha-particles to traverse the uniform magnetic
field region?

Region with uniform
vertical magnetic field

e

v ["
-
«-particle
beam

*
n®

Evacuated pipe

<|

Figure 11.10 Top view of the beam deflector setup.

Strategy
a. The direction of the magnetic field is shown by the RHR-1. Your fingers point in the direction of v, and
your thumb needs to point in the direction of the force, to the left. Therefore, since the alpha-particles are
positively charged, the magnetic field must point down.
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b. The period of the alpha-particle going around the circle is

_ 2mm (11.9)
T 4B

Because the particle is only going around a quarter of a circle, we can take 0.25 times the period to find
the time it takes to go around this path.

Solution
a. Let’s start by focusing on the alpha-particle entering the field near the bottom of the picture. First, point
your thumb up the page. In order for your palm to open to the left where the centripetal force (and hence
the magnetic force) points, your fingers need to change orientation until they point into the page. This is
the direction of the applied magnetic field.

b. The period of the charged particle going around a circle is calculated by using the given mass, charge, and
magnetic field in the problem. This works out to be

27(6.64 x 10727k
T=2am _ ul i g _ 2.6 1075,
98 (32x107"7C)0.050T)

However, for the given problem, the alpha-particle goes around a quarter of the circle, so the time it takes
would be

t=025%2.61%x10"%=65%x10""s.

Significance

This time may be quick enough to get to the material we would like to bombard, depending on how short-lived
the radioactive isotope is and continues to emit alpha-particles. If we could increase the magnetic field applied in
the region, this would shorten the time even more. The path the particles need to take could be shortened, but this
may not be economical given the experimental setup.

11.2 Check Your Understanding A uniform magnetic field of magnitude 1.5 T is directed horizontally from
west to east. (a) What is the magnetic force on a proton at the instant when it is moving vertically downward in

the field with a speed of 4 x 107 m/s? (b) Compare this force with the weight w of a proton.

Example 11.3

Helical Motion in a Magnetic Field

A proton enters a uniform magnetic field of 1.0 X 107*T with a speed of 5 X 105 m/s. At what angle must the
magnetic field be from the velocity so that the pitch of the resulting helical motion is equal to the radius of the
helix?

Strategy

The pitch of the motion relates to the parallel velocity times the period of the circular motion, whereas the radius

relates to the perpendicular velocity component. After setting the radius and the pitch equal to each other, solve
for the angle between the magnetic field and velocity or 6.

Solution

The pitch is given by Equation 11.8, the period is given by Equation 11.6, and the radius of circular motion
is given by Equation 11.5. Note that the velocity in the radius equation is related to only the perpendicular
velocity, which is where the circular motion occurs. Therefore, we substitute the sine component of the overall
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velocity into the radius equation to equate the pitch and radius:

p =r
- My
V” T = qB
2zm  _  mysind
vycos @ 4B - 4B
2r = tand
6 = 81.0°

Significance
If this angle were 0°, only parallel velocity would occur and the helix would not form, because there would
be no circular motion in the perpendicular plane. If this angle were 90°, only circular motion would occur and

there would be no movement of the circles perpendicular to the motion. That is what creates the helical motion.

11.4 | Magnetic Force on a Current-Carrying Conductor

Learning Objectives

By the end of this section, you will be able to:

» Determine the direction in which a current-carrying wire experiences a force in an external
magnetic field

* Calculate the force on a current-carrying wire in an external magnetic field

Moving charges experience a force in a magnetic field. If these moving charges are in a wire—that is, if the wire is carrying
a current—the wire should also experience a force. However, before we discuss the force exerted on a current by a magnetic
field, we first examine the magnetic field generated by an electric current. We are studying two separate effects here that
interact closely: A current-carrying wire generates a magnetic field and the magnetic field exerts a force on the current-
carrying wire.

Magnetic Fields Produced by Electrical Currents

When discussing historical discoveries in magnetism, we mentioned Oersted’s finding that a wire carrying an electrical
current caused a nearby compass to deflect. A connection was established that electrical currents produce magnetic fields.
(This connection between electricity and magnetism is discussed in more detail in Sources of Magnetic Fields.)

The compass needle near the wire experiences a force that aligns the needle tangent to a circle around the wire. Therefore, a
current-carrying wire produces circular loops of magnetic field. To determine the direction of the magnetic field generated
from a wire, we use a second right-hand rule. In RHR-2, your thumb points in the direction of the current while your fingers
wrap around the wire, pointing in the direction of the magnetic field produced (Figure 11.11). If the magnetic field were
coming at you or out of the page, we represent this with a dot. If the magnetic field were going into the page, we represent
this with an X. These symbols come from considering a vector arrow: An arrow pointed toward you, from your perspective,

would look like a dot or the tip of an arrow. An arrow pointed away from you, from your perspective, would look like a
cross or an X. A composite sketch of the magnetic circles is shown in Figure 11.11, where the field strength is shown to

decrease as you get farther from the wire by loops that are farther separated.
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Figure 11.11 (a) When the wire is in the plane of the paper, the field is perpendicular to the paper. Note the symbols used
for the field pointing inward (like the tail of an arrow) and the field pointing outward (like the tip of an arrow). (b) A long and
straight wire creates a field with magnetic field lines forming circular loops.

Calculating the Magnetic Force

Electric current is an ordered movement of charge. A current-carrying wire in a magnetic field must therefore experience a
force due to the field. To investigate this force, let’s consider the infinitesimal section of wire as shown in Figure 11.12.
The length and cross-sectional area of the section are dI and A, respectively, so its volume is V = A - dl. The wire is formed

from material that contains n charge carriers per unit volume, so the number of charge carriers in the section is nA -dl. If

the charge carriers move with drift velocity v 4 the current I in the wire is (from Current and Resistance)

I = neAv,.

- —
The magnetic force on any single charge carrier is ¢ V 4 X B, sothe total magnetic force d F onthe nA-dl charge

carriers in the section of wire is

dF =@A-d)eV 4x B . (11.10)
We can define dI to be a vector of length dI pointing along v d» which allows us to rewrite this equation as
dF =neAvydi x B, (11.11)
or
dF¥ =1di x B. (11.12)

This is the magnetic force on the section of wire. Note that it is actually the net force exerted by the field on the charge
carriers themselves. The direction of this force is given by RHR-1, where you point your fingers in the direction of the
current and curl them toward the field. Your thumb then points in the direction of the force.
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Figure 11.12 An infinitesimal section of current-carrying wire in a magnetic field.

—_
To determine the magnetic force F on a wire of arbitrary length and shape, we must integrate Equation 11.12 over the

entire wire. If the wire section happens to be straight and B is uniform, the equation differentials become absolute quantities,
giving us

¥ 1T xB. (1113

This is the force on a straight, current-carrying wire in a uniform magnetic field.

Example 11.4

Balancing the Gravitational and Magnetic Forces on a Current-Carrying Wire

A wire of length 50 cm and mass 10 g is suspended in a horizontal plane by a pair of flexible leads (Figure
11.13). The wire is then subjected to a constant magnetic field of magnitude 0.50 T, which is directed as shown.
What are the magnitude and direction of the current in the wire needed to remove the tension in the supporting
leads?

E
N T " T
x x x x x f i f
K —_—
x x x X x
| 50 cm |
x ! x ! x 7
mg
x x x x E x
@) (b)

Figure 11.13 (a) A wire suspended in a magnetic field. (b) The free-
body diagram for the wire.
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Strategy

From the free-body diagram in the figure, the tensions in the supporting leads go to zero when the gravitational
and magnetic forces balance each other. Using the RHR-1, we find that the magnetic force points up. We can then
determine the current I by equating the two forces.

Solution
Equate the two forces of weight and magnetic force on the wire:
mg = IIB.

Thus,

mg _ (0.010kg)(9.8 m/s?)

1B T (050m)(©050T) 0.39 A

1

Significance

This large magnetic field creates a significant force on a length of wire to counteract the weight of the wire.

Example 11.5

Calculating Magnetic Force on a Current-Carrying Wire

A long, rigid wire lying along the y-axis carries a 5.0-A current flowing in the positive y-direction. (a) If a constant
magnetic field of magnitude 0.30 T is directed along the positive x-axis, what is the magnetic force per unit length
on the wire? (b) If a constant magnetic field of 0.30 T is directed 30 degrees from the +x-axis towards the +y-axis,
what is the magnetic force per unit length on the wire?

Strategy

The magnetic force on a current-carrying wire in a magnetic field is given by i’) =1 T X E) . For part a,
since the current and magnetic field are perpendicular in this problem, we can simplify the formula to give us
the magnitude and find the direction through the RHR-1. The angle 6 is 90 degrees, which means sinf = 1.
Also, the length can be divided over to the left-hand side to find the force per unit length. For part b, the current
times length is written in unit vector notation, as well as the magnetic field. After the cross product is taken, the
directionality is evident by the resulting unit vector.

Solution
a. We start with the general formula for the magnetic force on a wire. We are looking for the force per unit
length, so we divide by the length to bring it to the left-hand side. We also set sinf = 1. The solution

therefore is

F = IIBsin@
§ = (5.0A)0.30T)
% = 1.5N/m.

Directionality: Point your fingers in the positive y-direction and curl your fingers in the positive
-
x-direction. Your thumb will point in the — k direction. Therefore, with directionality, the solution is

%: 15K N/m.

b. The current times length and the magnetic field are written in unit vector notation. Then, we take the cross
product to find the force:
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- - - A A A
F =11 x B =(5.04)j X(0.3OTCOS(30°)i +0.30Tsin(30°)j)

A
/l = =130k N/m.

=

Significance

This large magnetic field creates a significant force on a small length of wire. As the angle of the magnetic field
becomes more closely aligned to the current in the wire, there is less of a force on it, as seen from comparing
parts a and b.

11.3 Check Your Understanding A straight, flexible length of copper wire is immersed in a magnetic field
that is directed into the page. (a) If the wire’s current runs in the +x-direction, which way will the wire bend? (b)
Which way will the wire bend if the current runs in the —x-direction?

Example 11.6

Force on a Circular Wire

A circular current loop of radius R carrying a current I is placed in the xy-plane. A constant uniform magnetic
field cuts through the loop parallel to the y-axis (Figure 11.14). Find the magnetic force on the upper half of the
loop, the lower half of the loop, and the total force on the loop.

/' A A A

Figure 11.14 A loop of wire carrying a current in a magnetic
field.

Strategy

The magnetic force on the upper loop should be written in terms of the differential force acting on each segment
of the loop. If we integrate over each differential piece, we solve for the overall force on that section of the loop.
The force on the lower loop is found in a similar manner, and the total force is the addition of these two forces.

Solution
A differential force on an arbitrary piece of wire located on the upper ring is:

dF = IBsin0dl.

where @ is the angle between the magnetic field direction (+y) and the segment of wire. A differential segment
is located at the same radius, so using an arc-length formula, we have:

dl = Rdo
dF = IBRsinf8do.

In order to find the force on a segment, we integrate over the upper half of the circle, from 0 to z. This results in:

T
F=1IBR f sinfd0 = IBR(—cosz + cos0) = 2IBR.
0

This OpenStax book is available for free at http://cnx.org/content/col12074/1.9



Chapter 11 | Magnetic Forces and Fields

The lower half of the loop is integrated from 7z to zero, giving us:
0
F = IBR f sinfd@ = IBR(—cos0 + cosz) = —2IBR.
/2

The net force is the sum of these forces, which is zero.
Significance

The total force on any closed loop in a uniform magnetic field is zero. Even though each piece of the loop has
a force acting on it, the net force on the system is zero. (Note that there is a net torque on the loop, which we
consider in the next section.)

11.5 | Force and Torque on a Current Loop

Learning Objectives

By the end of this section, you will be able to:

* Evaluate the net force on a current loop in an external magnetic field
* Evaluate the net torque on a current loop in an external magnetic field
* Define the magnetic dipole moment of a current loop

Motors are the most common application of magnetic force on current-carrying wires. Motors contain loops of wire in a
magnetic field. When current is passed through the loops, the magnetic field exerts torque on the loops, which rotates a
shaft. Electrical energy is converted into mechanical work in the process. Once the loop’s surface area is aligned with the
magnetic field, the direction of current is reversed, so there is a continual torque on the loop (Figure 11.15). This reversal
of the current is done with commutators and brushes. The commutator is set to reverse the current flow at set points to keep
continual motion in the motor. A basic commutator has three contact areas to avoid and dead spots where the loop would
have zero instantaneous torque at that point. The brushes press against the commutator, creating electrical contact between
parts of the commutator during the spinning motion.

S S
BTN Brh
Commutator Commutator

@) (b)
Figure 11.15 A simplified version of a dc electric motor. (a) The rectangular wire loop is placed in a
magnetic field. The forces on the wires closest to the magnetic poles (N and S) are opposite in direction as
determined by the right-hand rule-1. Therefore, the loop has a net torque and rotates to the position shown
in (b). (b) The brushes now touch the commutator segments so that no current flows through the loop. No
torque acts on the loop, but the loop continues to spin from the initial velocity given to it in part (a). By
the time the loop flips over, current flows through the wires again but now in the opposite direction, and
the process repeats as in part (a). This causes continual rotation of the loop.
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In a uniform magnetic field, a current-carrying loop of wire, such as a loop in a motor, experiences both forces and torques

on the loop. Figure 11.16 shows a rectangular loop of wire that carries a current I and has sides of lengths a and b. The
A

loop is in a uniform magnetic field: f}) = B j. The magnetic force on a straight current-carrying wire of length [ is given

by I T X B . To find the net force on the loop, we have to apply this equation to each of the four sides. The force on
side 1 is

. A A 11.14

i’) 1 =1aBsin(90° — 0) i = IlaBcos0 i ( )

where the direction has been determined with the RHR-1. The current in side 3 flows in the opposite direction to that of side
1, so

i‘) 3 = —laBsin(90° + G)Ii\ = —IchosHli\. (11.15)
The currents in sides 2 and 4 are perpendicular to ﬁ and the forces on these sides are
¥, Bk, F ,=-IbBk. (11.16)
We can now find the net force on the loop:
(11.17)

- - - - -
ZFnet=F1+F2+F3+F4=0'

Although this result (XF = 0) has been obtained for a rectangular loop, it is far more general and holds for current-carrying

loops of arbitrary shapes; that is, there is no net force on a current loop in a uniform magnetic field.

z ﬁz
F,
4 F; B . B
)
i 1"/ ﬁ\/ /\ i” fi
L‘ \ - X 0
X: -y 0 &

Fs
@ (b)

Figure 11.16 (a) A rectangular current loop in a uniform magnetic field is subjected
to a net torque but not a net force. (b) A side view of the coil.

To find the net torque on the current loop shown in Figure 11.16, we first consider F'; and F5. Since they have the

same line of action and are equal and opposite, the sum of their torques about any axis is zero (see Fixed-Axis Rotation
(http:/lcnx.org/content/m58325/latest/) ). Thus, if there is any torque on the loop, it must be furnished by F, and

F,. Let’s calculate the torques around the axis that passes through point O of Figure 11.16 (a side view of the coil) and
is perpendicular to the plane of the page. The point O is a distance x from side 2 and a distance (a — x) from side 4 of the

loop. The moment arms of F, and F, are xsiné and (a — x)sin@, respectively, so the net torque on the loop is

A A 11.18
2?2?14‘ ?24‘ ?3-}' ?4 =F2xsin0i—F4(a—x)sin(6’)i ( )

A A

= —IbBxsin@i — IbB(a — x)sinf1i.

This simplifies to
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A 11.1
T = -IABsin@i (11.19)

where A = ab is the area of the loop.

Notice that this torque is independent of x; it is therefore independent of where point O is located in the plane of the current
loop. Consequently, the loop experiences the same torque from the magnetic field about any axis in the plane of the loop
and parallel to the x-axis.

A closed-current loop is commonly referred to as a magnetic dipole and the term IA is known as its magnetic dipole
moment yu. Actually, the magnetic dipole moment is a vector that is defined as

-

T —IAn (11.20)

N A
where n is a unit vector directed perpendicular to the plane of the loop (see Figure 11.16). The direction of n is
obtained with the RHR-2—if you curl the fingers of your right hand in the direction of current flow in the loop, then your

A
thumb points along n. If the loop contains N turns of wire, then its magnetic dipole moment is given by

T = NiAn. (11.21)

In terms of the magnetic dipole moment, the torque on a current loop due to a uniform magnetic field can be written simply
as

2 -7 x B. (11.22)

This equation holds for a current loop in a two-dimensional plane of arbitrary shape.

Using a calculation analogous to that found in Capacitance for an electric dipole, the potential energy of a magnetic dipole
is

U=—F% - B. (11.23)

Example 11.7

Forces and Torques on Current-Carrying Loops

A circular current loop of radius 2.0 cm carries a current of 2.0 mA. (a) What is the magnitude of its magnetic
dipole moment? (b) If the dipole is oriented at 30 degrees to a uniform magnetic field of magnitude 0.50 T, what
is the magnitude of the torque it experiences and what is its potential energy?

Strategy

The dipole moment is defined by the current times the area of the loop. The area of the loop can be calculated from
the area of the circle. The torque on the loop and potential energy are calculated from identifying the magnetic
moment, magnetic field, and angle oriented in the field.

Solution

a. The magnetic moment y is calculated by the current times the area of the loop or ar.

p=1A=2.0% 1073 A)#(0.02m)?) =2.5x 107 A-m?

b. The torque and potential energy are calculated by identifying the magnetic moment, magnetic field, and
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the angle between these two vectors. The calculations of these quantities are:
t = B x B =uBsind= (25% 107°A-m?)0.50T)sin(30°) = 6.3 x 107" N-m
U= -8 -B =—uBcosd = ~(2.5x 107A-m?)(0.50T)cos(30°) = —1.1 x 107°1.

Significance

The concept of magnetic moment at the atomic level is discussed in the next chapter. The concept of aligning the
magnetic moment with the magnetic field is the functionality of devices like magnetic motors, whereby switching
the external magnetic field results in a constant spinning of the loop as it tries to align with the field to minimize
its potential energy.

11.4 Check Your Understanding

In what orientation would a magnetic dipole have to be to produce (a) a maximum torque in a magnetic field?
(b) A maximum energy of the dipole?

11.6 | The Hall Effect

Learning Objectives

By the end of this section, you will be able to:

* Explain a scenario where the magnetic and electric fields are crossed and their forces balance
each other as a charged particle moves through a velocity selector

* Compare how charge carriers move in a conductive material and explain how this relates to the
Hall effect

In 1879, E.H. Hall devised an experiment that can be used to identify the sign of the predominant charge carriers in a
conducting material. From a historical perspective, this experiment was the first to demonstrate that the charge carriers in
most metals are negative.

Visit this website (https:/lopenstaxcollege.org/l/21halleffect) to find more information about the Hall
effect.

We investigate the Hall effect by studying the motion of the free electrons along a metallic strip of width I in a constant
magnetic field (Figure 11.17). The electrons are moving from left to right, so the magnetic force they experience pushes
them to the bottom edge of the strip. This leaves an excess of positive charge at the top edge of the strip, resulting in an
electric field E directed from top to bottom. The charge concentration at both edges builds up until the electric force on the
electrons in one direction is balanced by the magnetic force on them in the opposite direction. Equilibrium is reached when:

eE=ev,;B (11.24)

where e is the magnitude of the electron charge, v, is the drift speed of the electrons, and E is the magnitude of the electric

field created by the separated charge. Solving this for the drift speed results in

(11.25)

SIS
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(a) (b)
Figure 11.17 In the Hall effect, a potential difference between the top and bottom edges of
the metal strip is produced when moving charge carriers are deflected by the magnetic field. (a)
Hall effect for negative charge carriers; (b) Hall effect for positive charge carriers.

A scenario where the electric and magnetic fields are perpendicular to one another is called a crossed-field situation. If these
fields produce equal and opposite forces on a charged particle with the velocity that equates the forces, these particles are
able to pass through an apparatus, called a velocity selector, undeflected. This velocity is represented in Equation 11.26.
Any other velocity of a charged particle sent into the same fields would be deflected by the magnetic force or electric force.

Going back to the Hall effect, if the current in the strip is I, then from Current and Resistance, we know that
I =nev, A (11.26)

where n is the number of charge carriers per volume and A is the cross-sectional area of the strip. Combining the equations
for v, and I results in

— o(E (11.27)
I= ne( B)A.
The field E is related to the potential difference V between the edges of the strip by
E= % (11.28)

The quantity V is called the Hall potential and can be measured with a voltmeter. Finally, combining the equations for I and
E gives us

V= IBI (11.29)
neA

where the upper edge of the strip in Figure 11.17 is positive with respect to the lower edge.

We can also combine Equation 11.24 and Equation 11.28 to get an expression for the Hall voltage in terms of the
magnetic field:

V = Blv,. (11.30)

What if the charge carriers are positive, as in Figure 11.17? For the same current I, the magnitude of V is still given by
Equation 11.29. However, the upper edge is now negative with respect to the lower edge. Therefore, by simply measuring
the sign of V, we can determine the sign of the majority charge carriers in a metal.

Hall potential measurements show that electrons are the dominant charge carriers in most metals. However, Hall potentials
indicate that for a few metals, such as tungsten, beryllium, and many semiconductors, the majority of charge carriers are
positive. It turns out that conduction by positive charge is caused by the migration of missing electron sites (called holes) on
ions. Conduction by holes is studied later in Condensed Matter Physics (http://cnx.org/content/m58591/latest/) .
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The Hall effect can be used to measure magnetic fields. If a material with a known density of charge carriers n is placed in
a magnetic field and V is measured, then the field can be determined from Equation 11.29. In research laboratories where
the fields of electromagnets used for precise measurements have to be extremely steady, a “Hall probe” is commonly used
as part of an electronic circuit that regulates the field.

Example 11.8

Velocity Selector

An electron beam enters a crossed-field velocity selector with magnetic and electric fields of 2.0 mT and
6.0x 10> N/C, respectively. (a) What must the velocity of the electron beam be to traverse the crossed fields
undeflected? If the electric field is turned off, (b) what is the acceleration of the electron beam and (c) what is the
radius of the circular motion that results?

Strategy

The electron beam is not deflected by either of the magnetic or electric fields if these forces are balanced. Based
on these balanced forces, we calculate the velocity of the beam. Without the electric field, only the magnetic force
is used in Newton’s second law to find the acceleration. Lastly, the radius of the path is based on the resulting
circular motion from the magnetic force.

Solution
a. The velocity of the unperturbed beam of electrons with crossed fields is calculated by Equation 11.25:

_E _6x103N/C _ 35 106mys.
B 2x107T

b. The acceleration is calculated from the net force from the magnetic field, equal to mass times acceleration.
The magnitude of the acceleration is:

Va

ma = qvB
-19 6 -3
a0 = % _(1.6Xx1077 OB x 10° m/s)2x 107" T) _ 1.1x 10'5 m/s2.

9.1x 1073 kg

C. The radius of the path comes from a balance of the circular and magnetic forces, or Equation 11.25:

_my _ O1x 10 ke)3x 100 mIs) _ g oo yo-3
9B (1.6x107°C)2x 1073T)

Significance

If electrons in the beam had velocities above or below the answer in part (a), those electrons would have a stronger
net force exerted by either the magnetic or electric field. Therefore, only those electrons at this specific velocity
would make it through.

Example 11.9

The Hall Potential in a Silver Ribbon

Figure 11.18 shows a silver ribbon whose cross section is 1.0 cm by 0.20 cm. The ribbon carries a current of
100 A from left to right, and it lies in a uniform magnetic field of magnitude 1.5 T. Using a density value of

n=5.9x 102 electrons per cubic meter for silver, find the Hall potential between the edges of the ribbon.

This OpenStax book is available for free at http://cnx.org/content/col12074/1.9



Chapter 11 | Magnetic Forces and Fields 517

1.0cm X 0.20 cm

l_______

Figure 11.18 Finding the Hall potential in a silver ribbon in a
magnetic field is shown.

Strategy

Since the majority of charge carriers are electrons, the polarity of the Hall voltage is that indicated in the figure.
The value of the Hall voltage is calculated using Equation 11.29:

_ IBI
V= neA’

Solution

When calculating the Hall voltage, we need to know the current through the material, the magnetic field, the
length, the number of charge carriers, and the area. Since all of these are given, the Hall voltage is calculated as:

_ Bl _ (100 A)(1.5T)(1.0% 107> m)

— -6
—neA T (59x 10 /m3)1.6x 1071°C)2.0x 107 m?) TOXI0TV

Significance

As in this example, the Hall potential is generally very small, and careful experimentation with sensitive
equipment is required for its measurement.

11.5 Check Your Understanding A Hall probe consists of a copper strip, n = 8.5 X 10?8 electrons per

cubic meter, which is 2.0 cm wide and 0.10 c¢m thick. What is the magnetic field when I = 50 A and the Hall
potential is (a) 4.0uV and (b) 6.0uV?

11.7 | Applications of Magnetic Forces and Fields

Learning Objectives

By the end of this section, you will be able to:

* Explain how a mass spectrometer works to separate charges
* Explain how a cyclotron works

Being able to manipulate and sort charged particles allows deeper experimentation to understand what matter is made of. We
first look at a mass spectrometer to see how we can separate ions by their charge-to-mass ratio. Then we discuss cyclotrons
as a method to accelerate charges to very high energies.

Mass Spectrometer

The mass spectrometer is a device that separates ions according to their charge-to-mass ratios. One particular version, the
Bainbridge mass spectrometer, is illustrated in Figure 11.19. Tons produced at a source are first sent through a velocity
selector, where the magnetic force is equally balanced with the electric force. These ions all emerge with the same speed
v = E/B since any ion with a different velocity is deflected preferentially by either the electric or magnetic force, and
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ultimately blocked from the next stage. They then enter a uniform magnetic field B, where they travel in a circular path
whose radius R is given by Equation 11.3. The radius is measured by a particle detector located as shown in the figure.

Source

X : x
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Figure 11.19 A schematic of the Bainbridge mass spectrometer, showing charged
particles leaving a source, followed by a velocity selector where the electric and magnetic
forces are balanced, followed by a region of uniform magnetic field where the particle is
ultimately detected.

The relationship between the charge-to-mass ratio g/m and the radius R is determined by combining Equation 11.3 and
Equation 11.25:

__E (11.31)
BByR'

3l

Since most ions are singly charged (q =16x107" C), measured values of R can be used with this equation to

determine the mass of ions. With modern instruments, masses can be determined to one part in 108,

An interesting use of a spectrometer is as part of a system for detecting very small leaks in a research apparatus. In low-
temperature physics laboratories, a device known as a dilution refrigerator uses a mixture of He-3, He-4, and other cryogens
to reach temperatures well below 1 K. The performance of the refrigerator is severely hampered if even a minute leak
between its various components occurs. Consequently, before it is cooled down to the desired temperature, the refrigerator
is subjected to a leak test. A small quantity of gaseous helium is injected into one of its compartments, while an adjacent, but
supposedly isolated, compartment is connected to a high-vacuum pump to which a mass spectrometer is attached. A heated
filament ionizes any helium atoms evacuated by the pump. The detection of these ions by the spectrometer then indicates a
leak between the two compartments of the dilution refrigerator.

In conjunction with gas chromatography, mass spectrometers are used widely to identify unknown substances. While the
gas chromatography portion breaks down the substance, the mass spectrometer separates the resulting ionized molecules.
This technique is used with fire debris to ascertain the cause, in law enforcement to identify illegal drugs, in security to
identify explosives, and in many medicinal applications.

Cyclotron

The cyclotron was developed by E.O. Lawrence to accelerate charged particles (usually protons, deuterons, or alpha-
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particles) to large kinetic energies. These particles are then used for nuclear-collision experiments to produce radioactive
isotopes. A cyclotron is illustrated in Figure 11.20. The particles move between two flat, semi-cylindrical metallic
containers D1 and D2, called dees. The dees are enclosed in a larger metal container, and the apparatus is placed between
the poles of an electromagnet that provides a uniform magnetic field. Air is removed from the large container so that the
particles neither lose energy nor are deflected because of collisions with air molecules. The dees are connected to a high-
frequency voltage source that provides an alternating electric field in the small region between them. Because the dees are
made of metal, their interiors are shielded from the electric field.

High
High frequency
frequency voltage
voltage l'@'l source
source
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Figure 11.20 The inside of a cyclotron. A uniform magnetic field is applied as
circulating protons travel through the dees, gaining energy as they traverse through
the gap between the dees.

Suppose a positively charged particle is injected into the gap between the dees when D2 is at a positive potential relative
to D1. The particle is then accelerated across the gap and enters D1 after gaining kinetic energy qV, where V is the average
potential difference the particle experiences between the dees. When the particle is inside D1, only the uniform magnetic

——
field B of the electromagnet acts on it, so the particle moves in a circle of radius

=y 11.32
r=m (11.32)
with a period of
gB -

The period of the alternating voltage course is set at T, so while the particle is inside D1, moving along its semicircular orbit
in a time T/2, the polarity of the dees is reversed. When the particle reenters the gap, D1 is positive with respect to D2, and
the particle is again accelerated across the gap, thereby gaining a kinetic energy qV. The particle then enters D2, circulates
in a slightly larger circle, and emerges from D2 after spending a time T/2 in this dee. This process repeats until the orbit of
the particle reaches the boundary of the dees. At that point, the particle (actually, a beam of particles) is extracted from the
cyclotron and used for some experimental purpose.

The operation of the cyclotron depends on the fact that, in a uniform magnetic field, a particle’s orbital period is independent
of its radius and its kinetic energy. Consequently, the period of the alternating voltage source need only be set at the one
value given by Equation 11.33. With that setting, the electric field accelerates particles every time they are between the
dees.

If the maximum orbital radius in the cyclotron is R, then from Equation 11.32, the maximum speed of a circulating
particle of mass m and charge q is

gBR (11.34)

Vmax = 77 -
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Thus, its kinetic energy when ejected from the cyclotron is

2mv a 2”1 ’

The maximum kinetic energy attainable with this type of cyclotron is approximately 30 MeV. Above this energy, relativistic
effects become important, which causes the orbital period to increase with the radius. Up to energies of several hundred
MeV, the relativistic effects can be compensated for by making the magnetic field gradually increase with the radius of the
orbit. However, for higher energies, much more elaborate methods must be used to accelerate particles.

Particles are accelerated to very high energies with either linear accelerators or synchrotrons. The linear accelerator
accelerates particles continuously with the electric field of an electromagnetic wave that travels down a long evacuated
tube. The Stanford Linear Accelerator (SLAC) is about 3.3 km long and accelerates electrons and positrons (positively
charged electrons) to energies of 50 GeV. The synchrotron is constructed so that its bending magnetic field increases with
particle speed in such a way that the particles stay in an orbit of fixed radius. The world’s highest-energy synchrotron is
located at CERN, which is on the Swiss-French border near Geneva. CERN has been of recent interest with the verified
discovery of the Higgs Boson (see Particle Physics and Cosmology (http://cnx.org/content/m58767/latest/) ).

This synchrotron can accelerate beams of approximately 103 protons to energies of about 103 GeV.

Example 11.10

Accelerating Alpha-Particles in a Cyclotron

A cyclotron used to accelerate alpha-particles (m = 6.64 X 1077 kg, g =3.2X% 107"¢c ) has a radius of 0.50

m and a magnetic field of 1.8 T. (a) What is the period of revolution of the alpha-particles? (b) What is their
maximum kinetic energy?

Strategy
a. The period of revolution is approximately the distance traveled in a circle divided by the speed.
Identifying that the magnetic force applied is the centripetal force, we can derive the period formula.

b. The kinetic energy can be found from the maximum speed of the beam, corresponding to the maximum
radius within the cyclotron.

Solution
a. By identifying the mass, charge, and magnetic field in the problem, we can calculate the period:

27(6.64 x 107" kg)

2am -8
98 (32x 107" C)1.8T)

b. By identifying the charge, magnetic field, radius of path, and the mass, we can calculate the maximum
kinetic energy:

2
2p2p2  (32%x1071°C) (1.8T)2(0.50m)?
Ly 2 = L2 R L K DO _ 2% 107121 = 39Mev,
2 2m 2(6.65 x 102" kg)

11.6 Check Your Understanding A cyclotron is to be designed to accelerate protons to kinetic energies of
20 MeV using a magnetic field of 2.0 T. What is the required radius of the cyclotron?

This OpenStax book is available for free at http://cnx.org/content/col12074/1.9
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CHAPTER 11 REVIEW

KEY TERMS

cosmic rays comprised of particles that originate mainly from outside the solar system and reach Earth
cyclotron device used to accelerate charged particles to large kinetic energies

dees large metal containers used in cyclotrons that serve contain a stream of charged particles as their speed is increased
gauss G, unit of the magnetic field strength; 1 G = 10™*T

Hall effect creation of voltage across a current-carrying conductor by a magnetic field

helical motion superposition of circular motion with a straight-line motion that is followed by a charged particle moving
in a region of magnetic field at an angle to the field

magnetic dipole closed-current loop

magnetic dipole moment term IA of the magnetic dipole, also called u

magnetic field lines continuous curves that show the direction of a magnetic field; these lines point in the same
direction as a compass points, toward the magnetic south pole of a bar magnet

magnetic force force applied to a charged particle moving through a magnetic field

mass spectrometer device that separates ions according to their charge-to-mass ratios

motor (dc) loop of wire in a magnetic field; when current is passed through the loops, the magnetic field exerts torque on
the loops, which rotates a shaft; electrical energy is converted into mechanical work in the process

north magnetic pole currently where a compass points to north, near the geographic North Pole; this is the effective
south pole of a bar magnet but has flipped between the effective north and south poles of a bar magnet multiple times
over the age of Earth

right-hand rule-1 using your right hand to determine the direction of either the magnetic force, velocity of a charged
particle, or magnetic field

south magnetic pole currently where a compass points to the south, near the geographic South Pole; this is the
effective north pole of a bar magnet but has flipped just like the north magnetic pole

tesla SI unit for magnetic field: 1 T = 1 N/A-m

velocity selector apparatus where the crossed electric and magnetic fields produce equal and opposite forces on a
charged particle moving with a specific velocity; this particle moves through the velocity selector not affected by
either field while particles moving with different velocities are deflected by the apparatus

KEY EQUATIONS

Force on a charge in a magnetic field f‘) —qV x ﬁ
Magnitude of magnetic force F = qvBsin0
Radius of a particle’s path in a magnetic field = m_g
q
Period of a particle’s motion in a magnetic field T = 2zm
gB

Force on a current-carrying wire in a uniform magnetic field i‘) -7 T % ]—3’

. A
Magnetic dipole moment K = NIAn

Torque on a current loop

=
I
=l
X
=
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Energy of a magnetic dipole U=-TF - E’
Drift velocity in crossed electric and magnetic fields v = E
B
Hall potential v = 1Bl
neA
Hall potential in terms of drift velocity V =Blv,
Charge-to-mass ratio in a mass spectrometer 4q4__E
m = BByR
Maximum speed of a particle in a cyclotron __ gBR
Vmax = ~77—
SUMMARY

11.1 Magnetism and Its Historical Discoveries

¢ Magnets have two types of magnetic poles, called the north magnetic pole and the south magnetic pole. North
magnetic poles are those that are attracted toward Earth’s geographic North Pole.

¢ Like poles repel and unlike poles attract.

¢ Discoveries of how magnets respond to currents by Oersted and others created a framework that led to the invention
of modern electronic devices, electric motors, and magnetic imaging technology.

11.2 Magnetic Fields and Lines

- -
¢ Charges moving across a magnetic field experience a force determined by F =g¢ ¥V x B . The force is

. - g
perpendicular to the plane formedby vV and B .

¢ The direction of the force on a moving charge is given by the right hand rule 1 (RHR-1): Sweep your fingers in a
velocity, magnetic field plane. Start by pointing them in the direction of velocity and sweep towards the magnetic
field. Your thumb points in the direction of the magnetic force for positive charges.

¢ Magnetic fields can be pictorially represented by magnetic field lines, which have the following properties:
1. The field is tangent to the magnetic field line.
2. Field strength is proportional to the line density.
3. Field lines cannot cross.
4. Field lines form continuous, closed loops.

¢ Magnetic poles always occur in pairs of north and south—it is not possible to isolate north and south poles.

11.3 Motion of a Charged Particle in a Magnetic Field

¢ A magnetic force can supply centripetal force and cause a charged particle to move in a circular path of radius

my

r=qB'

¢ The period of circular motion for a charged particle moving in a magnetic field perpendicular to the plane of motion
is T = 2zam
gB -
¢ Helical motion results if the velocity of the charged particle has a component parallel to the magnetic field as well
as a component perpendicular to the magnetic field.

11.4 Magnetic Force on a Current-Carrying Conductor

¢ An electrical current produces a magnetic field around the wire.

This OpenStax book is available for free at http://cnx.org/content/col12074/1.9
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¢ The directionality of the magnetic field produced is determined by the right hand rule-2, where your thumb points
in the direction of the current and your fingers wrap around the wire in the direction of the magnetic field.

— - -
* The magnetic force on current-carrying conductors is given by F =1 1 X B where I is the current and [ is

the length of a wire in a uniform magnetic field B.

11.5 Force and Torque on a Current Loop

¢ The net force on a current-carrying loop of any plane shape in a uniform magnetic field is zero.

¢ The net torque T on a current-carrying loop of any shape in a uniform magnetic field is calculated using

-

- -
7= W X B where 7 is the magnetic dipole momentand B is the magnetic field strength.

¢ The magnetic dipole moment u is the product of the number of turns of wire N, the current in the loop I, and the

A
area of the loopAor @ = NIAn.

11.6 The Hall Effect

¢ Perpendicular electric and magnetic fields exert equal and opposite forces for a specific velocity of entering

particles, thereby acting as a velocity selector. The velocity that passes through undeflected is calculated by v = =

E
B

¢ The Hall effect can be used to measure the sign of the majority of charge carriers for metals. It can also be used to

measure a magnetic field.

11.7 Applications of Magnetic Forces and Fields

¢ A mass spectrometer is a device that separates ions according to their charge-to-mass ratios by first sending them
through a velocity selector, then a uniform magnetic field.

¢ Cyclotrons are used to accelerate charged particles to large kinetic energies through applied electric and magnetic

fields.

CONCEPTUAL QUESTIONS

11.2 Magnetic Fields and Lines

1. Discuss the similarities and differences between the
electrical force on a charge and the magnetic force on a
charge.

2. (a) Is it possible for the magnetic force on a charge
moving in a magnetic field to be zero? (b) Is it possible for
the electric force on a charge moving in an electric field to
be zero? (c) Is it possible for the resultant of the electric
and magnetic forces on a charge moving simultaneously
through both fields to be zero?

11.3 Motion of a Charged Particle in a Magnetic
Field

3. Ata given instant, an electron and a proton are moving
with the same velocity in a constant magnetic field.
Compare the magnetic forces on these particles. Compare
their accelerations.

4. Does increasing the magnitude of a uniform magnetic
field through which a charge is traveling necessarily mean

increasing the magnetic force on the charge? Does
changing the direction of the field necessarily mean a
change in the force on the charge?

5. An electron passes through a magnetic field without
being deflected. What do you conclude about the magnetic
field?

6. If a charged particle moves in a straight line, can you
conclude that there is no magnetic field present?

7. How could you determine which pole of an
electromagnet is north and which pole is south?

11.4 Magnetic Force on a Current-Carrying
Conductor

8. Describe the error that results from accidently using
your left rather than your right hand when determining the
direction of a magnetic force.

9. Considering the magnetic force law, are the velocity
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and magnetic field always perpendicular? Are the force and
velocity always perpendicular? What about the force and
magnetic field?

10. Why can a nearby magnet distort a cathode ray tube
television picture?

11. A magnetic field exerts a force on the moving
electrons in a current carrying wire. What exerts the force
on a wire?

12. There are regions where the magnetic field of earth
is almost perpendicular to the surface of Earth. What

PROBLEMS

11.2 Magnetic Fields and Lines

15. What is the direction of the magnetic force on a
positive charge that moves as shown in each of the six
cases?

Chapter 11 | Magnetic Forces and Fields

difficulty does this cause in the use of a compass?

11.6 The Hall Effect

13. Hall potentials are much larger for poor conductors
than for good conductors. Why?

11.7 Applications of Magnetic Forces and
Fields

14. Describe the primary function of the electric field and
the magnetic field in a cyclotron.

F v
° ° ° * B, A -
B
— =
L ] L ] L ] L ]
S S
° ° ° °
— =
Y
v
(a) (b)
x x xB, B
x x X -

(c) (d)
A A A /' E -
x = -
] Vclut
Vin _
B
(e) ®

16. Repeat previous exercise for a negative charge.
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17. What is the direction of the velocity of a negative
charge that experiences the magnetic force shown in each
of the three cases, assuming it moves perpendicular to B?

F F
A A
° ° o o ] _E
o ° o ol Eout e
(@) (b)

(©)
18. Repeat previous exercise for a positive charge.

19. What is the direction of the magnetic field that
produces the magnetic force on a positive charge as shown

——

in each of the three cases, assuming B is perpendicular
——

to v ?

xF

n

<l
<l

“‘I

(@) (b)

it

<|

©

20. Repeat previous exercise for a negative charge.
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21. (a) Aircraft sometimes acquire small static charges.
Suppose a supersonic jet has a 0.500-pC charge and flies
due west at a speed of 660. m/s over Earth’s south magnetic

pole, where the 8.00 X 107°9-T magnetic field points

straight down into the ground. What are the direction and
the magnitude of the magnetic force on the plane? (b)
Discuss whether the value obtained in part (a) implies this
is a significant or negligible effect.

22. (a) A cosmic ray proton moving toward Earth at
5.00x 107 m/s

1.70 x 107'® N. What is the strength of the magnetic

field if there is a 45° angle between it and the proton’s
velocity? (b) Is the value obtained in part a. consistent with
the known strength of Earth’s magnetic field on its surface?
Discuss.

experiences a magnetic force of

23. An electron moving at 4.00 X 103m/s in a 1.25-T
magnetic field experiences a magnetic force of
1.40x 107'® N. What angle does the velocity of the

electron make with the magnetic field? There are two
answers.

24. (a) A physicist performing a sensitive measurement
wants to limit the magnetic force on a moving charge in
her equipment to less than 1.00 X 10712 N. What is the
greatest the charge can be if it moves at a maximum speed
of 30.0 m/s in Earth’s field? (b) Discuss whether it would
be difficult to limit the charge to less than the value found in
(a) by comparing it with typical static electricity and noting
that static is often absent.

11.3 Motion of a Charged Particle in a Magnetic
Field

25. A cosmic-ray electron moves at 7.5 X 109 m/s
perpendicular to Earth’s magnetic field at an altitude where
the field strength is 1.0 X 10> T. What is the radius of the
circular path the electron follows?

26. (a) Viewers of Star Trek have heard of an antimatter
drive on the Starship Enterprise. One possibility for such
a futuristic energy source is to store antimatter charged
particles in a vacuum chamber, circulating in a magnetic
field, and then extract them as needed. Antimatter
annihilates normal matter, producing pure energy. What
strength magnetic field is needed to hold antiprotons,
moving at 5.0 X 10’m/s in a circular path 2.00 m in
radius? Antiprotons have the same mass as protons but
the opposite (negative) charge. (b) Is this field strength
obtainable with today’s technology or is it a futuristic
possibility?
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27. (@) An oxygen-16 ion with a mass of
2.66 x 10_26kg travels at 5.0 x 10%m/s perpendicular

to a 1.20-T magnetic field, which makes it move in a
circular arc with a 0.231-m radius. What positive charge is
on the ion? (b) What is the ratio of this charge to the charge
of an electron? (c) Discuss why the ratio found in (b) should
be an integer.

28. An electron in a TV CRT moves with a speed of
6.0x 107 m/s, in a direction perpendicular to Earth’s

field, which has a strength of 5.0 X 107°T. (a) What
strength electric field must be applied perpendicular to the
Earth’s field to make the electron moves in a straight line?
(b) If this is done between plates separated by 1.00 cm,
what is the voltage applied? (Note that TVs are usually
surrounded by a ferromagnetic material to shield against
external magnetic fields and avoid the need for such a
correction.)

29. (a) At what speed will a proton move in a circular path
of the same radius as the electron in the previous exercise?
(b) What would the radius of the path be if the proton had
the same speed as the electron? (c) What would the radius
be if the proton had the same kinetic energy as the electron?
(d) The same momentum?

30. (a) What voltage will accelerate electrons to a speed
of 6.00x 10~7 m/s? (b) Find the radius of curvature of

the path of a proton accelerated through this potential in a
0.500-T field and compare this with the radius of curvature
of an electron accelerated through the same potential.

31. An alpha-particle (m =6.64x 10727 ke,

q=32Xx% 1071 C) travels in a circular path of radius 25

cm in a uniform magnetic field of magnitude 1.5 T. (a)
What is the speed of the particle? (b) What is the kinetic
energy in electron-volts? (c) Through what potential
difference must the particle be accelerated in order to give
it this kinetic energy?

32. A particle of charge q and mass m is accelerated
from rest through a potential difference V, after which it
encounters a uniform magnetic field B. If the particle
moves in a plane perpendicular to B, what is the radius of
its circular orbit?

11.4 Magnetic Force on a Current-Carrying
Conductor

33. What is the direction of the magnetic force on the
current in each of the six cases?
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34. What is the direction of a current that experiences the
magnetic force shown in each of the three cases, assuming

—_
the current runs perpendicularto B ?
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35. What is the direction of the magnetic field that
produces the magnetic force shown on the currents in each

—_
of the three cases, assuming B is perpendicular to I?
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(©)

36. (a) What is the force per meter on a lightning bolt at
the equator that carries 20,000 A perpendicular to Earth’s
3.0% 10T field? (b) What is the direction of the force
if the current is straight up and Earth’s field direction is due
north, parallel to the ground?
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37. (a) A dc power line for a light-rail system carries 1000
A at an angle of 30.0° to Earth’s 5.0 X 10™>T field. What

is the force on a 100-m section of this line? (b) Discuss
practical concerns this presents, if any.

38. A wire carrying a 30.0-A current passes between the
poles of a strong magnet that is perpendicular to its field
and experiences a 2.16-N force on the 4.00 cm of wire in
the field. What is the average field strength?

11.5 Force and Torque on a Current Loop

39. (a) By how many percent is the torque of a motor
decreased if its permanent magnets lose 5.0% of their
strength? (b) How many percent would the current need to
be increased to return the torque to original values?

40. (a) What is the maximum torque on a 150-turn square
loop of wire 18.0 cm on a side that carries a 50.0-A current
in a 1.60-T field? (b) What is the torque when 6 is 10.9°?

41. Find the current through a loop needed to create a
maximum torque of 9.0 N-m. The loop has 50 square

turns that are 15.0 cm on a side and is in a uniform 0.800-T
magnetic field.

42, Calculate the magnetic field strength needed on a
200-turn square loop 20.0 cm on a side to create a
maximum torque of 300 N - m if the loop is carrying 25.0
A.

43. Since the equation for torque on a current-carrying
loop is T = NIAB sin 6, the units of N - m must equal units
of A - m? T. Verify this.

44. (a) At what angle 8 is the torque on a current loop
90.0% of maximum? (b) 50.0% of maximum? (c) 10.0% of
maximum?

45. A proton has a magnetic field due to its spin. The
field is similar to that created by a circular current loop

0.65 x 10~19m in radius with a current of 1.05 x 10* A.

Find the maximum torque on a proton in a 2.50-T field.
(This is a significant torque on a small particle.)

46. (a) A 200-turn circular loop of radius 50.0 cm is
vertical, with its axis on an east-west line. A current of 100
A circulates clockwise in the loop when viewed from the
east. Earth’s field here is due north, parallel to the ground,

with a strength of 3.0 X 10™>T. What are the direction

and magnitude of the torque on the loop? (b) Does this
device have any practical applications as a motor?
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47. Repeat the previous problem, but with the loop lying
flat on the ground with its current circulating
counterclockwise (when viewed from above) in a location
where Earth’s field is north, but at an angle 45.0° below the

horizontal and with a strength of 6.0 X 107°T.
N
; 45°
B N
w e U ~E

e

S

I

11.6 The Hall Effect

48. A strip of copper is placed in a uniform magnetic field
of magnitude 2.5 T. The Hall electric field is measured
to be 1.5% 1073 V/m. (a) What is the drift speed of the

conduction electrons? (b) Assuming that n = 8.0 X 1028
electrons per cubic meter and that the cross-sectional area
of the strip is 5.0 x 1076 mz, calculate the current in the
strip. (c) What is the Hall coefficient 1/nq?

49. The cross-sectional dimensions of the copper strip
shown are 2.0 cm by 2.0 mm. The strip carries a current of
100 A, and it is placed in a magnetic field of magnitude B =
1.5 T. What are the value and polarity of the Hall potential
in the copper strip? _

B

= |

M~ _—2.0cm X 2.0 mm

50. The magnitudes of the electric and magnetic fields
in a velocity selector are 1.8 X 10°V/m and 0.080 T,

respectively. (a) What speed must a proton have to pass

through the selector? (b) Also calculate the speeds required
for an alpha-particle and a singly ionized * 0'® atom to

pass through the selector.

51. A charged particle moves through a velocity selector
at constant velocity. In the selector, E = 1.0 X 10*N/C
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and B = 0.250 T. When the electric field is turned off, the
charged particle travels in a circular path of radius 3.33
mm. Determine the charge-to-mass ratio of the particle.

52. A Hall probe gives a reading of 1.5 p V for a current

of 2 A when it is placed in a magnetic field of 1 T. What is
the magnetic field in a region where the reading is 2 p V

for 1.7 A of current?

11.7 Applications of Magnetic Forces and
Fields

53. A physicist is designing a cyclotron to accelerate
protons to one-tenth the speed of light. The magnetic field
will have a strength of 1.5 T. Determine (a) the rotational
period of the circulating protons and (b) the maximum
radius of the protons’ orbit.

54. The strengths of the fields in the velocity selector of
a Bainbridge mass spectrometer are B = 0.500 T and E =

1.2x 10°> V/m, and the strength of the magnetic field
that separates the ions is B, = 0.750 T. A stream of singly

charged Li ions is found to bend in a circular arc of radius
2.32 cm. What is the mass of the Li ions?

55. The magnetic field in a cyclotron is 1.25 T, and the
maximum orbital radius of the circulating protons is 0.40
m. (a) What is the kinetic energy of the protons when they
are ejected from the cyclotron? (b) What is this energy
in MeV? (c) Through what potential difference would a
proton have to be accelerated to acquire this kinetic energy?
(d) What is the period of the voltage source used to
accelerate the protons? (e) Repeat the calculations for
alpha-particles.

56. A mass spectrometer is being used to separate
common oxygen-16 from the much rarer oxygen-18, taken
from a sample of old glacial ice. (The relative abundance
of these oxygen isotopes is related to climatic temperature
at the time the ice was deposited.) The ratio of the masses
of these two ions is 16 to 18, the mass of oxygen-16 is

2.66 x 10726 kg, and they are singly charged and travel

at 5.00x 10°m/s in a 1.20-T magnetic field. What is the

separation between their paths when they hit a target after
traversing a semicircle?

57. (a) Triply charged uranium-235 and uranium-238 ions
are being separated in a mass spectrometer. (The much
rarer uranium-235 is used as reactor fuel.) The masses

of the ions are  3.90x 1072 kg and 3.95 X 1075 kg,

respectively, and they travel at 3.0 X 10° m/s ina 0.250-T

field. What is the separation between their paths when
they hit a target after traversing a semicircle? (b) Discuss
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whether this distance between their paths seems to be big
enough to be practical in the separation of uranium-235

ADDITIONAL PROBLEMS

58. Calculate the magnetic force on a hypothetical particle
of charge 1.0X 107"%c moving with a velocity of

A A
6.0 x 10* i m/s in a magnetic field of 1.2KkT.

59. Repeat the previous problem with a new magnetic
A

A
field of (0.4 + 1.2k)T.

60. An electron is projected into a uniform magnetic field

A N
051 +0.8k)T with a velocity of
A N

(3.0i +4.0j)x 108 m/s. What is the magnetic force on

the electron?

61. The mass and charge of a water droplet are
1.0x107*g and 2.0x1078C,
droplet is

respectively. If the

given an initial horizontal velocity of

A
5.0% 10° im/s, what magnetic field will keep it moving

in this direction? Why must gravity be considered here?

62. Four different proton velocities are given. For each
case, determine the magnetic force on the proton in terms
ofe, vy, and By,

¥4
I I B = Bk
v, = vk
" ,,
V, = ygi o o v, = ug
/W= vu(%i + f])

63. An electron of kinetic energy 2000 eV passes between
parallel plates that are 1.0 cm apart and kept at a potential
difference of 300 V. What is the strength of the uniform
magnetic field B that will allow the electron to travel
undeflected through the plates? Assume E and B are
perpendicular.

64. An  alpha-particle (m =6.64x 10777 kg,

qg=32X% 1071 C) moving  with a  velocity

529

from uranium-238.

A N
vV = 2.0i —4.0k) x 10°m/s enters a region where
— A A 4
E =05.0i -2.0j)x 10" V/m and
- A A
B =(1.0i +4.0k)x 1072 T. What is the initial force
on it?
65. An electron moving with a velocity

A N A
v = (4.0i +3.0j +2.0k)>< 10®m/s enters a region

where there is a uniform electric field and a uniform

magnetic field. The magnetic field is given by
A A A

B = (1.0i —-20j +4.0k)>< 1072T. If the electron

travels through a region without being deflected, what is the
electric field?

66. At a particular instant, an electron is traveling west to
east with a kinetic energy of 10 keV. Earth’s magnetic field

has a horizontal component of 1.8 X 10™>T north and a

vertical component of 5.0 X 1075 T down. (a) What is the

path of the electron? (b) What is the radius of curvature of
the path?

67. Repeat the calculations of the previous problem for a
proton with the same kinetic energy.

68. What magnetic field is required in order to confine a
proton moving with a speed of 4.0 X 10%m/s to a circular
orbit of radius 10 cm?

69. An electron and a proton move with the same speed in
a plane perpendicular to a uniform magnetic field. Compare
the radii and periods of their orbits.

70. A proton and an alpha-particle have the same kinetic
energy and both move in a plane perpendicular to a uniform
magnetic field. Compare the periods of their orbits.

71. A singly charged ion takes 2.0 X 10735 to complete
eight revolutions in a uniform magnetic field of magnitude
2.0x 1072 T. What is the mass of the ion?

72. A particle moving downward at a speed of
6.0x 10°m/s enters a uniform magnetic field that is
horizontal and directed from east to west. (a) If the particle
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is deflected initially to the north in a circular arc, is its
charge positive or negative? (b) If B = 0.25 T and the
charge-to-mass ratio (g/m) of the particle is

4.0x 107 C/kg, what is the radius of the path? (c) What
is the speed of the particle after it has moved in the field for
1.0x 107552 for2.0's?

73. A proton, deuteron, and an alpha-particle are all
accelerated from rest through the same potential difference.
They then enter the same magnetic field, moving
perpendicular to it. Compute the ratios of the radii of their
circular paths. Assume that m; = 2m, and mg, = 4m,,.

74. A singly charged ion is moving in a uniform magnetic
field of 7.5x 1072T completes 10 revolutions in

3.47 x 10™*s. Identify the ion.

75. Two particles have the same linear momentum, but
particle A has four times the charge of particle B. If both
particles move in a plane perpendicular to a uniform
magnetic field, what is the ratio R 4 /R g of the radii of their

circular orbits?

76. A uniform magnetic field of magnitude B is directed
parallel to the z-axis. A proton enters the field with a

A A
velocity V =(4j +3k)x 10°m/s and travels in a

helical path with a radius of 5.0 cm. (a) What is the value
of B? (b) What is the time required for one trip around the
helix? (c) Where is the proton 5.0 X 1077 s after entering
the field?

77. An electron moving along the +x -axis at
5.0% 10°m/s enters a magnetic field that makes a 75°

angle with the x-axis of magnitude 0.20 T. Calculate the (a)
pitch and (b) radius of the trajectory.

78. (a) A 0.750-m-long section of cable carrying current
to a car starter motor makes an angle of 60° with Earth’s

5.5x 107>T field. What is the current when the wire

experiences a force of 7.0 X 1073N? (b) If you run the

wire between the poles of a strong horseshoe magnet,
subjecting 5.00 cm of it to a 1.75-T field, what force is
exerted on this segment of wire?

79. (a) What is the angle between a wire carrying an
8.00-A current and the 1.20-T field it is in if 50.0 cm of the
wire experiences a magnetic force of 2.40 N? (b) What is
the force on the wire if it is rotated to make an angle of 90°
with the field?

80. A 1.0-m-long segment of wire lies along the x-axis
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and carries a current of 2.0 A in the positive x-direction.
Around the wire is the nmagnetic field of

A A
(3.0 i x4.0k ) x 1073 T. Find the magnetic force on this

segment.

81. A 5.0-m section of a long, straight wire carries a
current of 10 A while in a uniform magnetic field of
magnitude 8.0 X 1073 T. Calculate the magnitude of the
force on the section if the angle between the field and the
direction of the current is (a) 45°; (b) 90°; (c) 0°; or (d)
180°.

82. An electromagnet produces a magnetic field of
magnitude 1.5 T throughout a cylindrical region of radius
6.0 cm. A straight wire carrying a current of 25 A passes
through the field as shown in the accompanying figure.
What is the magnetic force on the wire?

|+—12.0 cm —]|

83. The current loop shown in the accompanying figure
lies in the plane of the page, as does the magnetic field.
Determine the net force and the net torque on the loop if I
=10AandB=15T.

8.0 Cn‘l/
v/

84. A circular coil of radius 5.0 cm is wound with five
turns and carries a current of 5.0 A. If the coil is placed
in a uniform magnetic field of strength 5.0 T, what is the
maximum torque on it?

AB
I = 10A

-

Red

85. A circular coil of wire of radius 5.0 cm has 20 turns
and carries a current of 2.0 A. The coil lies in a magnetic
field of magnitude 0.50 T that is directed parallel to the
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plane of the coil. (a) What is the magnetic dipole moment
of the coil? (b) What is the torque on the coil?

86. A current-carrying coil in a magnetic field experiences
a torque that is 75% of the maximum possible torque. What
is the angle between the magnetic field and the normal to
the plane of the coil?

87. A 4.0-cm by 6.0-cm rectangular current loop carries a
current of 10 A. What is the magnetic dipole moment of the
loop?

88. A circular coil with 200 turns has a radius of 2.0
cm. (a) What current through the coil results in a magnetic
dipole moment of 3.0 Am?? (b) What is the maximum
torque that the coil will experience in a uniform field of

strength 5.0 X 1072T? (c) If the angle between y and B

is 45°, what is the magnitude of the torque on the coil?
(d) What is the magnetic potential energy of coil for this
orientation?

89. The current through a circular wire loop of radius 10
cm is 5.0 A. (a) Calculate the magnetic dipole moment
of the loop. (b) What is the torque on the loop if it is in
a uniform 0.20-T magnetic field such that ¢ and B are

directed at 30° to each other? (c) For this position, what is
the potential energy of the dipole?

90. A wire of length 1.0 m is wound into a single-turn
planar loop. The loop carries a current of 5.0 A, and it is
placed in a uniform magnetic field of strength 0.25 T. (a)
What is the maximum torque that the loop will experience
if it is square? (b) If it is circular? (c) At what angle relative
to B would the normal to the circular coil have to be
oriented so that the torque on it would be the same as the
maximum torque on the square coil?

91. Consider an electron rotating in a circular orbit of
radius r. Show that the magnitudes of the magnetic dipole
moment p and the angular momentum L of the electron are

related by: % = ﬁ.

92. The Hall effect is to be used to find the sign of charge
carriers in a semiconductor sample. The probe is placed
between the poles of a magnet so that magnetic field is
pointed up. A current is passed through a rectangular
sample placed horizontally. As current is passed through
the sample in the east direction, the north side of the sample
is found to be at a higher potential than the south side.
Decide if the number density of charge carriers is positively
or negatively charged.

93. The density of charge carriers for copper is
8.47 x 107 electrons per cubic meter. What will be the

Hall voltage reading from a probe made up of
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3emx2cmX 1 cm (L X W X T) copper plate when a

current of 1.5 A is passed through it in a magnetic field of
2.5 T perpendicular to the 3 cm X 2 cm.

94. The Hall effect is to be used to find the density of
charge carriers in an unknown material. A Hall voltage 40
uV for 3-A current is observed in a 3-T magnetic field for

a rectangular sample with length 2 cm, width 1.5 cm, and
height 0.4 cm. Determine the density of the charge carriers.

95. Show that the Hall voltage across wires made of the
same material, carrying identical currents, and subjected to
the same magnetic field is inversely proportional to their
diameters. (Hint: Consider how drift velocity depends on
wire diameter.)

96. A velocity selector in a mass spectrometer uses a
0.100-T magnetic field. (a) What electric field strength is

needed to select a speed of 4.0 X 109 m/s? (b) What is

the voltage between the plates if they are separated by 1.00
cm?

97. Find the radius of curvature of the path of a 25.0-MeV
proton moving perpendicularly to the 1.20-T field of a
cyclotron.

98. Unreasonable results To construct a non-mechanical
water meter, a 0.500-T magnetic field is placed across the
supply water pipe to a home and the Hall voltage is
recorded. (a) Find the flow rate through a 3.00-cm-diameter
pipe if the Hall voltage is 60.0 mV. (b) What would the
Hall voltage be for the same flow rate through a 10.0-cm-
diameter pipe with the same field applied?

99. Unreasonable results A charged particle having mass
6.64x 10727 kg (that of a helium atom) moving at

8.70 x 10° m/s perpendicular to a 1.50-T magnetic field

travels in a circular path of radius 16.0 mm. (a) What is the
charge of the particle? (b) What is unreasonable about this
result? (c) Which assumptions are responsible?

100. Unreasonable results An inventor wants to generate
120-V power by moving a 1.00-m-long wire perpendicular

to Earth’s 5.00x 107> T field. (a) Find the speed with

which the wire must move. (b) What is unreasonable about
this result? (c) Which assumption is responsible?

101. Unreasonable results Frustrated by the small Hall
voltage obtained in blood flow measurements, a medical
physicist decides to increase the applied magnetic field
strength to get a 0.500-V output for blood moving at 30.0
cm/s in a 1.50-cm-diameter vessel. (a) What magnetic field
strength is needed? (b) What is unreasonable about this
result? (c) Which premise is responsible?
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CHALLENGE PROBLEMS

102. A particle of charge +q and mass m moves with
velocity v o pointed in the +y-direction as it crosses the

x-axis at x = R at a particular time. There is a negative
charge —Q fixed at the origin, and there exists a uniform

_)
magnetic field B (; pointed in the +z-direction. It is found
that the particle describes a circle of radius R about —Q.

—_
Find B (; in terms of the given quantities.

103. A proton of speedv= 6 X 10° m/s enters a region of
uniform magnetic field of B=0.5T at an angle of g = 30°

to the magnetic field. In the region of magnetic field proton
describes a helical path with radius R and pitch p (distance
between loops). Find R and p.

104. A particle’s path is bent when it passes through a
region of non-zero magnetic field although its speed
remains unchanged. This is very useful for “beam steering”
in particle accelerators. Consider a proton of speed

4% 10%m/s entering a region of uniform magnetic field

0.2 T over a 5-cm-wide region. Magnetic field is
perpendicular to the velocity of the particle. By how much
angle will the path of the proton be bent? (Hint: The particle
comes out tangent to a circle.)

105. In a region a non-uniform magnetic field exists such
that B, =0, By = 0, and B, =ax, where a is a

constant. At some time ¢, a wire of length L is carrying a
current [ is located along the x-axis from origin to x = L.
Find the magnetic force on the wire at this instant in time.

106. A copper rod of mass m and length L is hung from the
ceiling using two springs of spring constant k. A uniform
magnetic field of magnitude B, pointing perpendicular to

the rod and spring (coming out of the page in the figure)
exists in a region of space covering a length w of the copper
rod. The ends of the rod are then connected by flexible
copper wire across the terminals of a battery of voltage V.
Determine the change in the length of the springs when a
current I runs through the copper rod in the direction shown
in figure. (Ignore any force by the flexible wire.)
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107. The accompanied figure shows an arrangement for
measuring mass of ions by an instrument called the mass
spectrometer. An ion of mass m and charge +q is produced
essentially at rest in source S, a chamber in which a gas
discharge is taking place. The ion is accelerated by a
potential difference V... and allowed to enter a region

—_
of constant magnetic field B ;. In the uniform magnetic

field region, the ion moves in a semicircular path striking
a photographic plate at a distance x from the entry point.
Derive a formula for mass m in terms of By, q, Vacc,

and x.
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108. A wire is made into a circular shape of radius R and
pivoted along a central support. The two ends of the wire
are touching a brush that is connected to a dc power source.
The structure is between the poles of a magnet such that we
can assume there is a uniform magnetic field on the wire.
In terms of a coordinate system with origin at the center
of the ring, magnetic field is B, = B, By =B,=0, and

the ring rotates about the z-axis. Find the torque on the ring
when it is not in the xz-plane.
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109. A long-rigid wire lies along the x-axis and carries a
current of 2.5 A in the positive x-direction. Around the wire

- A A
is the magnetic field B =2.0i + 5.0x2 Jj, with x in
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meters and B in millitesla. Calculate the magnetic force on
the segment of wire between x = 2.0 m and x = 4.0 m.

110. A circular loop of wire of area 10 cm? carries a
current of 25 A. At a particular instant, the loop lies in
the xy-plane and is subjected to a magnetic field

— A A A 5
B =(2.0i +6.0j +8.0k)>< 107" T. As viewed

from above the xy-plane, the current is circulating
clockwise. (a) What is the magnetic dipole moment of
the current loop? (b) At this instant, what is the magnetic
torque on the loop?



534 Chapter 11 | Magnetic Forces and Fields

This OpenStax book is available for free at http://cnx.org/content/col12074/1.9





